373 research outputs found

    Study of β-delayed charged particle emission of 11Li: Evidence of new decay channels

    Get PDF
    5 pags., 3 figs. -- 9th International Conference on Clustering Aspects of Nuclear Structure and Dynamics (CLUSTERS'07) 3–7 September 2007, Stratford upon Avon, UKThe break-up of the 18.2 MeV state in 11Be was studied in a 11Li β-decay experiment. We report here on the study of the dominating breakup channels involving na6He or 3n2α in the final state, with special emphasis dedicated in this contribution to the three-particle channel. The two emitted charged particles were detected in coincidence using a highly segmented experimental set-up. The observed experimental energy-vs-energy scatter plot indicates a sequential breakup where nuclei of mass 4, alpha particles, and mass 7, 7He, are involved. A Monte-Carlo simulation of the sequential channel, 11Be* → α + 7He → nα6He was performed and compared to the experimental data and to a simulation of the direct break-up of the 18.2 MeV state nα6He by phase space energy distribution. The energy-versus-energy plot are explained by the sequential simulation but not by the phase space simulation. © 2008 IOP Publishing Ltd

    The Magnitude and Mechanism of Charge Enhancement of CH∙∙O H-bonds

    Get PDF
    Quantum calculations find that neutral methylamines and thioethers form complexes, with N-methylacetamide (NMA) as proton acceptor, with binding energies of 2–5 kcal/mol. This interaction is magnified by a factor of 4–9, bringing the binding energy up to as much as 20 kcal/mol, when a CH3+ group is added to the proton donor. Complexes prefer trifurcated arrangements, wherein three separate methyl groups donate a proton to the O acceptor. Binding energies lessen when the systems are immersed in solvents of increasing polarity, but the ionic complexes retain their favored status even in water. The binding energy is reduced when the methyl groups are replaced by longer alkyl chains. The proton acceptor prefers to associate with those CH groups that are as close as possible to the S/N center of the formal positive charge. A single linear CH··O hydrogen bond (H-bond) is less favorable than is trifurcation with three separate methyl groups. A trifurcated arrangement with three H atoms of the same methyl group is even less favorable. Various means of analysis, including NBO, SAPT, NMR, and electron density shifts, all identify the +CH··O interaction as a true H-bond

    Effects of Charge and Substituent on the S∙∙∙N Chalcogen Bond

    Get PDF
    Neutral complexes containing a S···N chalcogen bond are compared with similar systems in which a positive charge has been added to the S-containing electron acceptor, using high-level ab initio calculations. The effects on both XS···N and XS+···N bonds are evaluated for a range of different substituents X = CH3, CF3, NH2, NO2, OH, Cl, and F, using NH3 as the common electron donor. The binding energy of XMeS···NH3 varies between 2.3 and 4.3 kcal/mol, with the strongest interaction occurring for X = F. The binding is strengthened by a factor of 2–10 in charged XH2S+···NH3 complexes, reaching a maximum of 37 kcal/mol for X = F. The binding is weakened to some degree when the H atoms are replaced by methyl groups in XMe2S+···NH3. The source of the interaction in the charged systems, like their neutral counterparts, is derived from a charge transfer from the N lone pair into the σ*(SX) antibonding orbital, supplemented by a strong electrostatic and smaller dispersion component. The binding is also derived from small contributions from a CH···N H-bond involving the methyl groups, which is most notable in the weaker complexes
    • …
    corecore